A Versatile Polymer Micelle Drug Delivery System for Encapsulation and In Vivo Stabilization of Hydrophobic Anticancer Drugs
نویسندگان
چکیده
Chemotherapeutic drugs are widely used for the treatment of cancer; however, use of these drugs is often associated with patient toxicity and poor tumor delivery. Micellar drug carriers offer a promising approach for formulating and achieving improved delivery of hydrophobic chemotherapeutic drugs; however, conventional micelles do not have long-term stability in complex biological environments such as plasma. To address this problem, a novel triblock copolymer has been developed to encapsulate several different hydrophobic drugs into stable polymer micelles. These micelles have been engineered to be stable at low concentrations even in complex biological fluids, and to release cargo in response to low pH environments, such as in the tumor microenvironment or in tumor cell endosomes. The particle sizes of drugs encapsulated ranged between 30-80 nm, with no relationship to the hydrophobicity of the drug. Stabilization of the micelles below the critical micelle concentration was demonstrated using a pH-reversible crosslinking mechanism, with proof-of-concept demonstrated in both in vitro and in vivo models. Described herein is polymer micelle drug delivery system that enables encapsulation and stabilization of a wide variety of chemotherapeutic drugs in a single platform.
منابع مشابه
In Vitro Cytotoxic Activity and Binding Properties of Curcumin in the Presence of β-Casein Micelle Nanoparticles
Curcumin (CUR) is the active curcuminoid with many physiological, biochemical, and pharmacological properties. Solubility and stability of CUR is the limiting factors for realizing its therapeutic potential. Bovine β-casein is an abundant milk protein that is highly amphiphilic and self-assembles into stable micellar nanoparticles in aqueous solution. β-Casein nanoparticle can solubilize CUR mo...
متن کاملPreparation and evaluation of PCL-PEG-PCL micelles as potential nanocarriers for ocular delivery of dexamethasone
Objective(s): Micelles have been studied as nanoparticulate drug delivery systems for improving the topical ocular delivery of hydrophobic drugs. The objective of this study was to develop and characterize dexamethasone-loaded polycaprolactone-polyethylene glycol-polycaprolactone (PCL-PEG-PCL) micelles to improve patient compliance and enhance the ocular bioavailability of poorly water-soluble ...
متن کاملA review on electrospun nanofibers for oral drug delivery
Nowadays, polymer nanofibers have gained attention due to remarkable characteristics such as high porosity and large surface area to volume ratio. Among their fabrication methods, electrospinning technique has been attracted as a simple and reproducible approach. It is a versatile, simple and cost-effective technique for the production of continuous nanofibers with acceptable characteristics su...
متن کاملIT-141, a Polymer Micelle Encapsulating SN-38, Induces Tumor Regression in Multiple Colorectal Cancer Models
Polymer micelles are promising drug delivery vehicles for the delivery of anticancer agents to tumors. Often, anticancer drugs display potent cytotoxic effects towards cancer cells but are too hydrophobic to be administered in the clinic as a free drug. To address this problem, a polymer micelle was designed using a triblock copolymer (ITP-101) that enables hydrophobic drugs to be encapsulated....
متن کاملMatrix Tablets: An Effective Way for Oral Controlled Release Drug Delivery
The purpose of this review article is to characterize all of the parameters regarding the types, polymers used, and release kinetics of matrix tablets. Matrix system was the earliest oral extended release platform for medicinal use. Matrix tablets are most commonly used methods to modulate the release profile of drugs. They are much desirable and preferred for such therapy because they o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012